462 research outputs found

    Electrocardiographic (ECG) criteria for determining left ventricular mass in young healthy men; data from the LARGE Heart study

    Get PDF
    Background: Doubts remain over the use of the ECG in identifying those with increased left ventricular (LV) mass. This is especially so in young individuals, despite their high prevalence of ECG criteria for LV hypertrophy. We performed a study using cardiovascular magnetic resonance (CMR), which provides an in vivo non-invasive gold standard method of measuring LV mass, allowing accurate assessment of electrocardiography as a tool for defining LV hypertrophy in the young.Methods and results: Standard 12-lead ECGs were obtained from 101 Caucasian male army recruits aged (mean +/- SEM) 19.7 +/- 0.2 years. LV mass was measured using CMR. LV mass indexed to body surface area demonstrated no significant correlation with the Cornell Amplitude criteria or Cornell Product for LV hypertrophy. Moderate correlations were seen with the Sokolow-Lyon Amplitude (0.28) and Sokolow-Lyon Product (0.284). Defining LV hypertrophy as a body surface area indexed left ventricular mass of 93 g/m(2), calculated sensitivities [and specificities] were as follows; 38.7% [74.3%] for the Sokolow-Lyon criteria, 43.4% [61.4%] for the Sokolow-Lyon Product, 19.4% [91.4%] for Cornell Amplitude, and 22.6% [85.7%] for Cornell Product. These values are substantially less than those reported for older age groups.Conclusion: ECG criteria for LV hypertrophy may have little value in determining LV mass or the presence of LV hypertrophy in young fit males

    Characterization of left and right atrial function in healthy volunteers by cardiovascular magnetic resonance.

    Get PDF
    BACKGROUND: Left and right atrial function show a different pattern in advanced age in order to maintain adequate ventricular filling. It has been shown that left atrial (LA) function has a prognostic value in a number of heart conditions. Cardiovascular magnetic resonance (CMR) provides high quality images of the left and right atria using high temporal resolution steady state free precession (SSFP) cine sequences. We used SSFP cines to characterize atrial function in healthy, normotensive, volunteers. METHODS: We measured maximum, preatrial contraction and minimum left and right atrial volumes in 120 healthy subjects after careful exclusion of cardiovascular abnormality (60 men, 60 women; 20 subjects per age decile from 20 to 80 years). Data were generated from 3-dimensional modeling, including tracking of the atrioventricular ring motion and time-volume curves analysis. With those measurements, all the usual parameters for left and right atrial function were calculated. RESULTS: Gender had significant influence on some parameters of left and right atrial conduit and booster pump function. Age significantly influenced the majority of parameters of both left and right atrial function, with typically lower reservoir and conduit functions and higher booster pump function, both in males and females belonging to older age groups. CMR normal ranges were modelled for clinical use with normalization, where appropriate, for body surface area and gender, displaying parameters with respect to age. CONCLUSIONS: CMR normal reference ranges for components of left and right atrial function are provided for males and females for a wide age range

    Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque.

    Get PDF
    BACKGROUND: Multi-contrast weighted cardiovascular magnetic resonance (CMR) allows detailed plaque characterisation and assessment of plaque vulnerability. The aim of this preliminary study was to show the potential of Ultra-short Echo Time (UTE) subtraction MR in detecting calcification. METHODS: 14 ex-vivo human carotid arteries were scanned using CMR and CT, prior to histological slide preparation. Two images were acquired using a double-echo 3D UTE pulse, one with a long TE and the second with an ultra-short TE, with the same TR. An UTE subtraction (DeltaUTE) image containing only ultra-short T2 (and T2*) signals was obtained by post-processing subtraction of the 2 UTE images. The DeltaUTE image was compared to the conventional 3D T1-weighted sequence and CT scan of the carotid arteries. RESULTS: In atheromatous carotid arteries, there was a 71% agreement between the high signal intensity areas on DeltaUTE images and CT scan. The same areas were represented as low signal intensity on T1W and areas of void on histology, indicating focal calcification. However, in 15% of all the scans there were some incongruent regions of high intensity on DeltaUTE that did not correspond with a high intensity signal on CT, and histology confirmed the absence of calcification. CONCLUSIONS: We have demonstrated that the UTE sequence has potential to identify calcified plaque. Further work is needed to fully understand the UTE findings

    Review of Journal of Cardiovascular Magnetic Resonance 2015

    Get PDF
    There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication

    Coronary microvascular ischemia in hypertrophic cardiomyopathy - a pixel-wise quantitative cardiovascular magnetic resonance perfusion study.

    Get PDF
    BACKGROUND: Microvascular dysfunction in HCM has been associated with adverse clinical outcomes. Advances in quantitative cardiovascular magnetic resonance (CMR) perfusion imaging now allow myocardial blood flow to be quantified at the pixel level. We applied these techniques to investigate the spectrum of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and to explore its relationship with fibrosis and wall thickness. METHODS: CMR perfusion imaging was undertaken during adenosine-induced hyperemia and again at rest in 35 patients together with late gadolinium enhancement (LGE) imaging. Myocardial blood flow (MBF) was quantified on a pixel-by-pixel basis from CMR perfusion images using a Fermi-constrained deconvolution algorithm. Regions-of-interest (ROI) in hypoperfused and hyperemic myocardium were identified from the MBF pixel maps. The myocardium was also divided into 16 AHA segments. RESULTS: Resting MBF was significantly higher in the endocardium than in the epicardium (mean ± SD: 1.25 ± 0.35 ml/g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001), a pattern that reversed with stress (2.00 ± 0.76 ml/g/min versus 2.36 ± 0.83 ml/g/min, P < 0.001). ROI analysis revealed 11 (31%) patients with stress MBF lower than resting values (1.05 ± 0.39 ml/g/min versus 1.22 ± 0.36 ml/g/min, P = 0.021). There was a significant negative association between hyperemic MBF and wall thickness (β = −0.047 ml/g/min per mm, 95% CI: −0.057 to −0.038, P < 0.001) and a significantly lower probability of fibrosis in a segment with increasing hyperemic MBF (odds ratio per ml/g/min: 0.086, 95% CI: 0.078 to 0.095, P = 0.003). CONCLUSIONS: Pixel-wise quantitative CMR perfusion imaging identifies a subgroup of patients with HCM that have localised severe microvascular dysfunction which may give rise to myocardial ischemia
    • …
    corecore